D0.204.1.HEP Particle physics at the LHC

1. Study program

1. Study program	
1.1. University	"Alexandru Ioan Cuza" University of Iasi, University of Bucharest
1.2. Faculty	Faculty of Physics
1.3. Department	Department of Theoretical Physics, Mathematics, Optics, Plasma
_	and Lasers (Bucharest), Department of Physics (Iasi)
1.4. Field of study	Physics
1.5. Course of study	Master of Science
1.6. Study program	High Energy Physics (in English)
1.7. Study mode	Full-time study

2. Course unit

2.1. Course unit	1. Course unit title Particle physics at the LHC								
2.2. Teacher			Daniel Radu						
2.3. Tutorials/Pr	racticals	instructor(s)			Daniel Radu				
2.4. Year of		2.5.		2.6	5. Type of		2.7. Type	Content ¹⁾	DS
study	II	Semester	1	ev	aluation	E	of course		
							unit		
								Type ²⁾	DO

¹⁾ fundamental (DF), specialized (DS); complementary (DC) ²⁾ compulsory (DI), elective (DO), noncompulsory disciplines (DFC)

3. Total estimated time (hours/semester)

3.1. Hours per week in curriculum	4	distribution: Lecture	2	Practicals/Tutorials	2
3.2. Total hours per semester	56	Lecture	28	Practicals/Tutorials	28
Distribution of estimated time for stu	ıdy	·		•	hours
3.2.1. Learning by using one's own course notes, manuals, lecture notes, bibliography				, bibliography	30
3.2.2. Research in library, study of e	lectron	ic resources, field resea	arch		30
3.2.3. Preparation for practicals/tutor	ials/pro	ojects/reports/homewo	rks		32
3.2.4. Preparation for exam		¥ •			4
3.2.5. Other activities					0
3.3. Total hours of individual study	96				

	70
3.4. Total hours per semester	150
3.5. ECTS	6

4. Prerequisites (if necessary)

4.1. curriculum	Quantum mechanics, Electrodynamics, Theory of relativity, Standandard Model, Dectors
4.2. competences	Knowledge about: algebra, quantum mechanics, electrodynamics, standarm model of elementary particles, detectors

5. Conditions/Infrastructure (if necessary)

5.1. for lecture	Video projector
5.2. for practicals/tutorials	

6. Specific competences acquired

0. Specific comp	etences acquired
Professional	• Identify and proper use of the main physical laws and principles in a given context: the use
competences	of the concepts of the standard model
	• Solving problems of physics under given conditions
	• Use of the physical principles and laws for solving theoretical or practical problems with
	qualified tutoring
	• Rigorous knowledge of quantum field theory, concepts, notions and problems in the area
	of theoretical particle physics and their interactions
	• Ability to use this knowledge in interpretation of experimental result and understand
	experiments at CERN; acquire the appropriate understanding of studied fundamental
	mechanisms
Transversal	• Efficient use of sources of information and communication resources and training
competences	assistance in a foreign language
-	• Efficient and responsible implementation of professional tasks, with observance of the
	laws, ethics and deontology.

7. Course objectives

7. Course objectives	
7.1. General objective	To supply good knowledge on specific elements related to the state of the art in elementary particle physics at CERN, both theoretically and
	especially experimentally and phenomenologically.
	Presentation of the current situation at the LHC regarding the
	"interaction" between theory and experiment and to teach the
	maximum amount of physics, with the minimum level of maths.
7.2. Specific objectives	 Application of knowledge to practical situations;
	 Ability in extracting information from a large variety of sources. The
	main feature of this course is that it gives a serious explanation of the
	practical side of the subject at an accessible level for undergraduates.
	This will provide students with some real understanding of these
	subjects and equip them to appreciate the many excellent graduate-
	level textbooks in these fields and to follow published papers. The
	core of the course covers the theory and experiments that underpin the
	Standard Model.
	• Upon successful completion of this discipline, students will be able to
	describe and explain physical phenomena and processes related to the
	discipline;
	 Upon successful completion of this discipline, students will be able to
	analyze physical phenomena and processes related to the discipline,
	as well as calculate values of physical quantities involved in both
	discipline-related and boundary/interdisciplinary physical phenomena
	and processes.

8. Contents

8.1. Lecture [chapters]	Teaching techniques	Observations/ hours
Units. Particles and forces. Accelerators, colliders and detectors	Systematic exposition - lecture. Examples	2 hours
Discrete symmetries. <i>J</i> ^{<i>PC</i>} of hadrons. Addition of angular momentum. Spatial rotations. Lorentz invariance. Rapidity.	Systematic exposition - lecture. Examples	2 hours

Transitions and observables. Decay rate. Cross	Systematic exposition -	2 hours
section. Luminosity and event rates.	lecture. Examples	
Accelerators. Radiofrequency acceleration. Beam optics. LHC dipole magnets. Colliders and fixed-target accelerators. p-anti_p colliders.	Systematic exposition - lecture. Examples	2 hours
Particle detectors. Particle interaction with matter. Signal generation. Photon detection. Detectors for charged-particle tracks.	Systematic exposition - lecture. Examples	2 hours
Detectors for particle jets. Detectors for particle identification. LHC triggers. Neutrino detectors.	Systematic exposition - lecture. Examples	2 hours
The quark model of hadrons. Heavy quarks. Exotic hadrons.	Systematic exposition - lecture. Examples	2 hours
Elements of quantum mechanics. Spinors. One- particle states. Klein-Gordon and Dirac equations. Gauge symmetry.	Systematic exposition - lecture. Examples	2 hours
Weak interactions of leptons. Weak interaction including quarks. Introduction to electroweak unification. The Standard Model, how good is it?	Systematic exposition - lecture. Examples	2 hours
Experimental tests of electroweak theory. Neutrinos. Charged and neutral currents. Physics at e^+e^- colliders. W and Z physics at hadron colliders. Top-quark physics.	Systematic exposition - lecture. Examples	2 hours
Quark-parton model. Neutrino interactions. Charged-lepton probes. QCD introduction. Hadron- hadron collisions.	Systematic exposition - lecture. Examples	2 hours
Oscillations and CP violation in meson systems. LHCb measurements	Systematic exposition - lecture. Examples	2 hours
Neutrino oscillations. Laboratory confirmation of atmospheric neutrino oscillation. Solar neutrinos. MSW effect.	Systematic exposition - lecture. Examples	2 hours
The Higgs boson. Spontaneous symmetry breaking. Higgs mechanism. Higgs discovery. LHC and SM physics. Experimental searches for BSM physics at the LHC.	Systematic exposition - lecture. Examples	2 hours

Bibliography:

1. S. Weinberg, The quantum theory of fields, Vol. I and Vol. II Cambridge University Press, 2005.

2. G. Barr, R. Devenish, R, Walczak & T. Weidberg, Particle Physics in the LHC Era, Oxford

University Press, 2016.

3. F. Halzen, A. Martin, Quarks and Leptons, An introductory course in modern particle physics

John Wiley & Sons Inc., 1984

 R.P. Feynman, R.B. Leighton and M. Sands, Feynman Lectures on Physics, Vol. II, Addison-Wesley, 1965.

8.2. Tutorials [main themes]	Teaching and learning techniques	Observations/hours
Applications of the topics presented in the lecture.	Problem solving. Presentation	28 hours

Bibliography:

1. G. Barr, R. Devenish, R, Walczak & T. Weidberg, Particle Physics in the LHC Era, Oxford

University Press, 2016.

2. F. Halzen, A. Martin, *Quarks and Leptons, An introductory course in modern particle physics* John Wiley & Sons Inc., 1984

9. Compatibility of the course unit contents with the expectations of the representatives of epistemic communities, professional associations and employers (in the field of the study program)

This course unit develops some theoretical competences, which are fundamental for a Master student in the field of modern physics, corresponding to national and international standards. The contents is in line with the requirement of the main employers of research institutes and universities.

10. Assessment

Activity type	10.1. Assessment criteria	10.2. Assessment methods	10.3. Weight in final mark
10.4. Lecture	 - coherence and clarity of exposition - correct use of equations/mathematical methods/physical models and theories - ability to indicate/analyse specific examples 	Oral examination	40%
10.5.1. Tutorials	 ability to use specific problem solving methods ability to analyse the results nents for passing the exam 	Homeworks/Presentations	60%

Attendance of at least 50% for the lectures and at least 70% for the tutorials.

Correct solutions to the indicated subjects for obtaining the grade 5 (10 points scale) from all activities, part of the continuous evaluation.

Correct solutions to the indicated subjects for obtaining the grade 5 (10 points scale) within the final exam.

Date 4.10.2024

Teacher's name and signature

Practicals/Tutorials instructor(s) name(s) and signature(s)

Daniel Radu

Daniel Radu

Date of approval

Head of Department Lect.dr. Roxana Zus